DeepSeek Introduces Advanced Video Understanding and Analysis Capabilities
Published: January 20, 2025
DeepSeek today unveiled its revolutionary video understanding and analysis capabilities, enabling AI to process, analyze, and generate insights from video content with unprecedented accuracy and speed.
Revolutionary Video AI Features
Comprehensive Video Understanding
- Multi-Frame Analysis with temporal context awareness
- Object Tracking across video sequences
- Action Recognition with real-time classification
- Scene Understanding with contextual interpretation
- Audio-Visual Synchronization for complete multimedia analysis
Advanced Video Processing
- Real-Time Video Analysis with streaming support
- Batch Video Processing for large-scale operations
- Video Summarization with key moment extraction
- Content Moderation with automated safety checks
- Video Search with semantic understanding
Video Generation Capabilities
- Text-to-Video Generation from natural language descriptions
- Video Editing Assistance with AI-powered suggestions
- Automated Video Transcription with speaker identification
- Video Translation with lip-sync preservation
Technical Capabilities
Video Input and Processing
Multiple Video Format Support
python
from deepseek import VideoClient
client = VideoClient(api_key="your-api-key")
# Supported video formats
supported_formats = [
"MP4", "AVI", "MOV", "WMV", "FLV",
"WebM", "MKV", "3GP", "M4V"
]
# Process video from file
video_analysis = client.video.analyze(
video_path="path/to/video.mp4",
analysis_type="comprehensive",
include_audio=True
)
# Process video from URL
video_analysis = client.video.analyze(
video_url="https://example.com/video.mp4",
analysis_type="real_time",
streaming=True
)
# Process video from base64
video_analysis = client.video.analyze(
video_data=base64_encoded_video,
analysis_type="detailed",
extract_frames=True
)
Real-Time Video Streaming Analysis
python
import asyncio
from deepseek import AsyncVideoClient
async def analyze_video_stream():
client = AsyncVideoClient(api_key="your-api-key")
# Analyze live video stream
async for frame_analysis in client.video.stream_analyze(
stream_url="rtmp://live.example.com/stream",
analysis_config={
"frame_rate": 30,
"analysis_interval": 1.0, # Analyze every second
"include_audio": True,
"real_time": True
}
):
print(f"Timestamp: {frame_analysis.timestamp}")
print(f"Objects detected: {frame_analysis.objects}")
print(f"Actions: {frame_analysis.actions}")
print(f"Scene description: {frame_analysis.scene}")
# Process results in real-time
await process_frame_results(frame_analysis)
asyncio.run(analyze_video_stream())
Video Understanding Examples
Comprehensive Video Analysis
python
# Detailed video content analysis
analysis_result = client.video.analyze(
video_path="educational_video.mp4",
analysis_config={
"extract_text": True,
"identify_speakers": True,
"detect_objects": True,
"recognize_actions": True,
"analyze_emotions": True,
"generate_summary": True,
"create_transcript": True
}
)
print("Video Analysis Results:")
print(f"Duration: {analysis_result.duration} seconds")
print(f"Resolution: {analysis_result.resolution}")
print(f"Frame rate: {analysis_result.frame_rate} fps")
# Scene-by-scene breakdown
for scene in analysis_result.scenes:
print(f"\nScene {scene.id} ({scene.start_time}s - {scene.end_time}s):")
print(f"Description: {scene.description}")
print(f"Objects: {', '.join(scene.objects)}")
print(f"Actions: {', '.join(scene.actions)}")
print(f"Text detected: {scene.text_content}")
# Audio analysis
print(f"\nAudio Analysis:")
print(f"Transcript: {analysis_result.transcript}")
print(f"Speakers: {analysis_result.speakers}")
print(f"Language: {analysis_result.language}")
print(f"Sentiment: {analysis_result.sentiment}")
# Summary and insights
print(f"\nVideo Summary:")
print(analysis_result.summary)
print(f"Key topics: {', '.join(analysis_result.key_topics)}")
print(f"Content rating: {analysis_result.content_rating}")
Video Question Answering
python
# Ask questions about video content
video_qa = client.video.question_answering(
video_path="conference_presentation.mp4",
questions=[
"What is the main topic of this presentation?",
"Who are the speakers in this video?",
"What are the key points discussed?",
"Are there any charts or graphs shown?",
"What is the conclusion of the presentation?"
]
)
for qa in video_qa.results:
print(f"Q: {qa.question}")
print(f"A: {qa.answer}")
print(f"Confidence: {qa.confidence}")
print(f"Timestamp: {qa.timestamp}")
print("---")
Video Content Moderation
python
# Automated content moderation
moderation_result = client.video.moderate(
video_path="user_uploaded_video.mp4",
moderation_config={
"check_violence": True,
"check_adult_content": True,
"check_hate_speech": True,
"check_spam": True,
"check_copyright": True,
"sensitivity_level": "medium"
}
)
print("Content Moderation Results:")
print(f"Overall safety score: {moderation_result.safety_score}/100")
print(f"Approved for publication: {moderation_result.approved}")
if moderation_result.issues:
print("Issues detected:")
for issue in moderation_result.issues:
print(f"- {issue.type}: {issue.description}")
print(f" Severity: {issue.severity}")
print(f" Timestamp: {issue.timestamp}")
print(f" Confidence: {issue.confidence}")
Video Generation and Editing
Text-to-Video Generation
python
# Generate video from text description
video_generation = client.video.generate(
prompt="A serene mountain landscape at sunrise with birds flying overhead",
generation_config={
"duration": 10, # 10 seconds
"resolution": "1920x1080",
"frame_rate": 30,
"style": "cinematic",
"include_audio": True,
"audio_style": "ambient_nature"
}
)
print(f"Video generated: {video_generation.video_url}")
print(f"Generation time: {video_generation.processing_time} seconds")
print(f"Quality score: {video_generation.quality_score}")
# Download the generated video
video_generation.download("generated_video.mp4")
Video Editing Assistance
python
# AI-powered video editing suggestions
editing_suggestions = client.video.suggest_edits(
video_path="raw_footage.mp4",
editing_goals=[
"improve_pacing",
"enhance_audio",
"add_transitions",
"color_correction",
"remove_filler_words"
]
)
print("Editing Suggestions:")
for suggestion in editing_suggestions.recommendations:
print(f"- {suggestion.type}: {suggestion.description}")
print(f" Timestamp: {suggestion.start_time}s - {suggestion.end_time}s")
print(f" Impact: {suggestion.impact_score}/10")
print(f" Difficulty: {suggestion.difficulty}")
# Apply suggested edits automatically
edited_video = client.video.apply_edits(
video_path="raw_footage.mp4",
edits=editing_suggestions.recommendations[:5], # Apply top 5 suggestions
output_path="edited_video.mp4"
)
Video Transcription and Translation
python
# Advanced video transcription
transcription = client.video.transcribe(
video_path="multilingual_conference.mp4",
transcription_config={
"identify_speakers": True,
"include_timestamps": True,
"detect_language": True,
"format": "srt", # SubRip format
"include_confidence": True
}
)
print("Transcription Results:")
print(f"Detected languages: {transcription.languages}")
print(f"Number of speakers: {len(transcription.speakers)}")
# Export transcription
transcription.export("transcription.srt")
transcription.export("transcription.vtt") # WebVTT format
transcription.export("transcription.json") # JSON format
# Translate video content
translation = client.video.translate(
video_path="english_video.mp4",
target_languages=["spanish", "french", "german", "chinese"],
translation_config={
"preserve_timing": True,
"include_subtitles": True,
"voice_cloning": True, # Maintain original speaker's voice
"lip_sync": True
}
)
for lang in translation.results:
print(f"Translation to {lang.language}:")
print(f"- Subtitle file: {lang.subtitle_file}")
print(f"- Dubbed video: {lang.dubbed_video}")
print(f"- Quality score: {lang.quality_score}")
Advanced Video Applications
Educational Content Analysis
python
# Analyze educational videos for learning insights
education_analysis = client.video.analyze_educational_content(
video_path="math_lesson.mp4",
analysis_config={
"extract_concepts": True,
"identify_examples": True,
"detect_formulas": True,
"analyze_difficulty": True,
"suggest_improvements": True
}
)
print("Educational Content Analysis:")
print(f"Subject: {education_analysis.subject}")
print(f"Difficulty level: {education_analysis.difficulty_level}")
print(f"Key concepts: {', '.join(education_analysis.concepts)}")
for segment in education_analysis.learning_segments:
print(f"\nSegment: {segment.title}")
print(f"Time: {segment.start_time}s - {segment.end_time}s")
print(f"Concept: {segment.concept}")
print(f"Examples: {', '.join(segment.examples)}")
print(f"Clarity score: {segment.clarity_score}/10")
Security and Surveillance
python
# Video surveillance analysis
surveillance_analysis = client.video.analyze_surveillance(
video_path="security_camera_feed.mp4",
analysis_config={
"detect_people": True,
"track_movement": True,
"identify_anomalies": True,
"recognize_faces": False, # Privacy-preserving
"detect_objects": True,
"alert_threshold": 0.8
}
)
print("Surveillance Analysis:")
for event in surveillance_analysis.events:
print(f"Event: {event.type}")
print(f"Time: {event.timestamp}")
print(f"Location: {event.coordinates}")
print(f"Confidence: {event.confidence}")
print(f"Alert level: {event.alert_level}")
if event.alert_level == "high":
print("🚨 High priority alert!")
Sports and Performance Analysis
python
# Sports video analysis
sports_analysis = client.video.analyze_sports(
video_path="basketball_game.mp4",
sport_type="basketball",
analysis_config={
"track_players": True,
"analyze_plays": True,
"detect_scores": True,
"measure_performance": True,
"generate_highlights": True
}
)
print("Sports Analysis:")
print(f"Sport: {sports_analysis.sport}")
print(f"Game duration: {sports_analysis.duration}")
print(f"Final score: {sports_analysis.final_score}")
for play in sports_analysis.key_plays:
print(f"\nPlay: {play.type}")
print(f"Time: {play.timestamp}")
print(f"Players involved: {', '.join(play.players)}")
print(f"Outcome: {play.outcome}")
print(f"Highlight worthy: {play.is_highlight}")
# Generate highlight reel
highlights = client.video.generate_highlights(
video_path="basketball_game.mp4",
highlight_config={
"duration": 120, # 2 minutes
"include_scores": True,
"include_best_plays": True,
"add_music": True,
"style": "dynamic"
}
)
Performance and Scalability
Processing Benchmarks
┌─────────────────────────────────────────────────────────────┐
│ Video Processing Performance │
├─────────────────────────────────────────────────────────────┤
│ Video Length │ Analysis Time │ Accuracy │ Features │
│ ────────────────┼─────────────────┼────────────┼───────────│
│ 1 minute │ 15s │ 97.2% │ Full │
│ 5 minutes │ 45s │ 96.8% │ Full │
│ 30 minutes │ 3.5m │ 96.5% │ Full │
│ 2 hours │ 12m │ 96.1% │ Full │
│ Live stream │ Real-time │ 95.8% │ Limited │
└─────────────────────────────────────────────────────────────┘
Supported Video Specifications
- Resolution: Up to 4K (3840x2160)
- Frame Rate: Up to 60 FPS
- Duration: Up to 4 hours per video
- File Size: Up to 2GB per upload
- Batch Processing: Up to 100 videos simultaneously
Integration Examples
Web Application Integration
javascript
// Video analysis in web applications
class VideoAnalyzer {
constructor(apiKey) {
this.client = new DeepSeekVideo(apiKey);
}
async analyzeUploadedVideo(videoFile) {
const formData = new FormData();
formData.append('video', videoFile);
formData.append('analysis_type', 'comprehensive');
try {
const analysis = await this.client.video.analyze(formData);
return {
summary: analysis.summary,
objects: analysis.objects,
transcript: analysis.transcript,
scenes: analysis.scenes,
duration: analysis.duration
};
} catch (error) {
console.error('Video analysis failed:', error);
throw error;
}
}
async generateVideoSummary(videoUrl) {
const summary = await this.client.video.summarize({
video_url: videoUrl,
summary_length: 'medium',
include_timestamps: true
});
return summary;
}
}
// Usage in React component
const VideoUploader = () => {
const [analysis, setAnalysis] = useState(null);
const [loading, setLoading] = useState(false);
const handleVideoUpload = async (file) => {
setLoading(true);
try {
const analyzer = new VideoAnalyzer(process.env.REACT_APP_DEEPSEEK_API_KEY);
const result = await analyzer.analyzeUploadedVideo(file);
setAnalysis(result);
} catch (error) {
console.error('Analysis failed:', error);
} finally {
setLoading(false);
}
};
return (
<div className="video-uploader">
<input
type="file"
accept="video/*"
onChange={(e) => handleVideoUpload(e.target.files[0])}
/>
{loading && <div>Analyzing video...</div>}
{analysis && (
<div className="analysis-results">
<h3>Video Analysis Results</h3>
<p><strong>Summary:</strong> {analysis.summary}</p>
<p><strong>Duration:</strong> {analysis.duration} seconds</p>
<p><strong>Objects:</strong> {analysis.objects.join(', ')}</p>
<h4>Transcript:</h4>
<p>{analysis.transcript}</p>
<h4>Scenes:</h4>
{analysis.scenes.map((scene, index) => (
<div key={index} className="scene">
<strong>Scene {index + 1}:</strong> {scene.description}
</div>
))}
</div>
)}
</div>
);
};
Mobile App Integration
swift
// iOS Swift integration
import Foundation
class DeepSeekVideoAnalyzer {
private let apiKey: String
private let baseURL = "https://api.deepseek.com/v1"
init(apiKey: String) {
self.apiKey = apiKey
}
func analyzeVideo(videoURL: URL, completion: @escaping (VideoAnalysis?, Error?) -> Void) {
var request = URLRequest(url: URL(string: "\(baseURL)/video/analyze")!)
request.httpMethod = "POST"
request.setValue("Bearer \(apiKey)", forHTTPHeaderField: "Authorization")
request.setValue("application/json", forHTTPHeaderField: "Content-Type")
let parameters: [String: Any] = [
"video_url": videoURL.absoluteString,
"analysis_type": "comprehensive",
"include_audio": true
]
do {
request.httpBody = try JSONSerialization.data(withJSONObject: parameters)
} catch {
completion(nil, error)
return
}
URLSession.shared.dataTask(with: request) { data, response, error in
if let error = error {
completion(nil, error)
return
}
guard let data = data else {
completion(nil, NSError(domain: "NoData", code: 0, userInfo: nil))
return
}
do {
let analysis = try JSONDecoder().decode(VideoAnalysis.self, from: data)
completion(analysis, nil)
} catch {
completion(nil, error)
}
}.resume()
}
}
struct VideoAnalysis: Codable {
let summary: String
let duration: Double
let objects: [String]
let transcript: String
let scenes: [Scene]
let contentRating: String
}
struct Scene: Codable {
let startTime: Double
let endTime: Double
let description: String
let objects: [String]
}
Pricing and Plans
Video Analysis Pricing
- Basic Analysis: $0.10 per minute of video
- Comprehensive Analysis: $0.25 per minute of video
- Real-time Streaming: $0.50 per minute of stream
- Video Generation: $2.00 per minute of generated video
Enterprise Features
- Bulk Processing: 50% discount for 1000+ hours/month
- Custom Models: Training on specific video types
- Priority Processing: Guaranteed processing times
- Dedicated Support: 24/7 technical assistance
Getting Started
Quick Start Guide
1. Setup and Installation
bash
# Install the video SDK
pip install deepseek-video
# Set up your API key
export DEEPSEEK_API_KEY="your-api-key-here"
2. First Video Analysis
python
from deepseek import VideoClient
client = VideoClient()
# Analyze your first video
result = client.video.analyze(
video_path="sample_video.mp4",
analysis_type="basic"
)
print(f"Summary: {result.summary}")
print(f"Objects: {result.objects}")
3. Explore Advanced Features
python
# Try comprehensive analysis
advanced_result = client.video.analyze(
video_path="sample_video.mp4",
analysis_type="comprehensive",
include_audio=True,
generate_summary=True
)
print(f"Transcript: {advanced_result.transcript}")
print(f"Key topics: {advanced_result.key_topics}")
Resources and Documentation
Developer Resources
DeepSeek's Video Understanding capabilities open up new possibilities for content creators, educators, businesses, and developers to harness the power of AI for video analysis, generation, and enhancement.